Boost for Solar Cells Also Makes Self-Driving Cars Safer

Solar

Engineers working to make solar cells more cost effective ended up finding a method for making sonar-like collision avoidance systems in self-driving cars.

The twin discoveries started, the researchers say, when they began looking for a solution to a well-known problem in the world of solar cells.

Solar cells capture photons from sunlight in order to convert them into electricity. The thicker the layer of silicon in the cell, the more light it can absorb, and the more electricity it can ultimately produce. But the sheer expense of silicon has become a barrier to solar cost-effectiveness.

So the engineers figured out how to create a very thin layer of silicon that could absorb as many photons as a much thicker layer of the costly material. Specifically, rather than laying the silicon flat, they nanotextured the surface of the silicon in a way that created more opportunities for light particles to be absorbed.

Their technique increased photon absorption rates for the nanotextured solar cells compared to traditional thin silicon cells, making more cost-effective use of the material.

Continue reading “Boost for Solar Cells Also Makes Self-Driving Cars Safer”

Advertisements

Clues to why leaves come in many sizes

Rainforest canopy, Panama

The huge variety of leaves in the plant kingdom has long been a source of wonder and fascination.

The leaves of a banana plant, for instance, are about a million times bigger than the leaves of heather.

The conventional wisdom is that leaf size is limited by the balance between how much water is available to a plant and the risk of overheating.

However, a study of more than 7,000 plant species around the world suggests the answer may be more complex.

Continue reading “Clues to why leaves come in many sizes”

This ancient sea worm sported a crowd of ‘claws’ around its mouth

illustration of an ancient arrow worm

Predatory sea worms just aren’t as spiny as they used to be.

These arrow worms, which make up the phylum Chaetognatha, snatch prey with Wolverine-like claws protruding from around their mouths. Researchers now report that a newly identified species of ancient arrow worm was especially heavily armed. Dubbed Capinatator praetermissus, the predator had about 50 curved head spines, more than twice as many as most of its modern relatives. Arranged in two crescents, the spines could snap shut like a Venus flytrap to catch small invertebrates.

Continue reading “This ancient sea worm sported a crowd of ‘claws’ around its mouth”

What Curiosity has yet to tell us about Mars

Curiosity selfie on lower Mount Sharp

After five years on Mars, the Curiosity rover is an old pro at doing science on the Red Planet. Since sticking its landingon August 5, 2012, NASA’s Little Robot That Could has learned a lot about its environs.

Its charge was simple: Look for signs that Gale crater, a huge impact basin with a mountain at its center, might once have been habitable (for microbes, not Matt Damon). Turning over rocks across the crater, the rover has compiled evidence of ancient water — a lake fed by rivers once occupied the crater itself — and organic compounds and other chemicals essential for life.

NASA has extended the mission through October 2018. And there’s still plenty of interesting chemistry and geology to be done. As the robot continues to climb Mount Sharp at the center of the crater, Curiosity will explore three new rock layers: one dominated by the iron mineral hematite, one dominated by clay and one with lots of sulfate salts.

So, here are four Martian mysteries that Curiosity could solve (or at least dig up some dirt on).

Continue reading “What Curiosity has yet to tell us about Mars”

Earth is becoming ‘Planet Plastic’

Hasil carian imej untuk earth is becoming a plastic

US scientists have calculated the total amount of plastic ever made and put the number at 8.3 billion tonnes.

It is an astonishing mass of material that has essentially been created only in the last 65 years or so.

The 8.3 billion tonnes is as heavy as 25,000 Empire State Buildings in New York, or a billion elephants.

The great issue is that plastic items, like packaging, tend to be used for very short periods before being discarded.

More than 70% of the total production is now in waste streams, sent largely to landfill – although too much of it just litters the wider environment, including the oceans.

“We are rapidly heading towards ‘Planet Plastic’, and if we don’t want to live on that kind of world then we may have to rethink how we use some materials, in particular plastic,” Dr Roland Geyer told BBC News.

Continue reading “Earth is becoming ‘Planet Plastic’”

When should babies sleep in their own rooms?

baby crying in crib

When we brought our first baby home from the hospital, our pediatrician advised us to have her sleep in our room. We put our tiny new roommate in a crib near our bed (though other containers that were flat, firm and free of blankets, pillows or stuffed animals would have worked, too).

The advice aims to reduce the risk of sleep-related deaths, including sudden infant death syndrome, or SIDS. Studies suggest that in their first year of life, babies who bunk with their parents (but not in the same bed) are less likely to die from SIDS than babies who sleep in their own room. The reasons aren’t clear, but scientists suspect it has to do with lighter sleep: Babies who sleep near parents might more readily wake themselves up and avoid the deep sleep that’s a risk factor for SIDS.

Continue reading “When should babies sleep in their own rooms?”

WHEN IT COMES TO THE FLU, THE NOSE HAS A LONG MEMORY

Image result for flu

After an influenza infection, the nose recruits immune cells with long memories to keep watch for the virus, research with mice suggests.

For the first time, this type of immune cell — known as tissue resident memory T cells — has been found in the nose, researchers report June 2 in Science Immunology. Such nasal resident memory T cells may prevent flu from recurring. Future nasal spray vaccines that boost the number of these T cells in the nose might be an improvement over current flu shots, researchers say.

It’s known that some T cell sentinels take up residence in specific tissues, including the brain, liver, intestines, skin and lungs. In most of these tissues, the resident memory T cells start patrolling after a localized infection. “They’re basically sitting there waiting in case you get infected with that pathogen again,” says Linda Wakim, an immunologist at the University of Melbourne in Australia. If a previous virus invades again, the T cells can quickly kill infected cells and make chemical signals, called cytokines, to call in other immune cells for reinforcement. These T cells can persist for years in most tissues.

Continue reading “WHEN IT COMES TO THE FLU, THE NOSE HAS A LONG MEMORY”