When should babies sleep in their own rooms?

baby crying in crib

When we brought our first baby home from the hospital, our pediatrician advised us to have her sleep in our room. We put our tiny new roommate in a crib near our bed (though other containers that were flat, firm and free of blankets, pillows or stuffed animals would have worked, too).

The advice aims to reduce the risk of sleep-related deaths, including sudden infant death syndrome, or SIDS. Studies suggest that in their first year of life, babies who bunk with their parents (but not in the same bed) are less likely to die from SIDS than babies who sleep in their own room. The reasons aren’t clear, but scientists suspect it has to do with lighter sleep: Babies who sleep near parents might more readily wake themselves up and avoid the deep sleep that’s a risk factor for SIDS.

Continue reading “When should babies sleep in their own rooms?”

WHEN IT COMES TO THE FLU, THE NOSE HAS A LONG MEMORY

Image result for flu

After an influenza infection, the nose recruits immune cells with long memories to keep watch for the virus, research with mice suggests.

For the first time, this type of immune cell — known as tissue resident memory T cells — has been found in the nose, researchers report June 2 in Science Immunology. Such nasal resident memory T cells may prevent flu from recurring. Future nasal spray vaccines that boost the number of these T cells in the nose might be an improvement over current flu shots, researchers say.

It’s known that some T cell sentinels take up residence in specific tissues, including the brain, liver, intestines, skin and lungs. In most of these tissues, the resident memory T cells start patrolling after a localized infection. “They’re basically sitting there waiting in case you get infected with that pathogen again,” says Linda Wakim, an immunologist at the University of Melbourne in Australia. If a previous virus invades again, the T cells can quickly kill infected cells and make chemical signals, called cytokines, to call in other immune cells for reinforcement. These T cells can persist for years in most tissues.

Continue reading “WHEN IT COMES TO THE FLU, THE NOSE HAS A LONG MEMORY”

JUMPING GENES PLAY A BIG ROLE IN WHAT MAKES US HUMAN

chimpanzee and human

THE DIFFERENCE  Humans and chimpanzees are easy to tell apart, even though they share a primate ancestor. Jumping genes helped sculpt their distinctions

Face-to-face, a human and a chimpanzee are easy to tell apart. The two species share a common primate ancestor, but over millions of years, their characteristics have morphed into easily distinguishable features. Chimps developed prominent brow ridges, flat noses, low-crowned heads and protruding muzzles. Human noses jut from relatively flat faces under high-domed crowns.

Continue reading “JUMPING GENES PLAY A BIG ROLE IN WHAT MAKES US HUMAN”

MARS MAY NOT HAVE BEEN BORN ALONGSIDE THE OTHER ROCKY PLANETS

Mars

Mars may have had a far-out birthplace.

Simulating the assembly of the solar system around 4.56 billion years ago, researchers propose that the Red Planet didn’t form in the inner solar system alongside the other terrestrial planets as previously thought. Mars instead may have formed around where the asteroid belt is now and migrated inward to its present-day orbit, the scientists report in the June 15 Earth and Planetary Science Letters. The proposal better explains why Mars has such a different chemical composition than Earth, says Stephen Mojzsis, a study coauthor and geologist at the University of Colorado Boulder.

Continue reading “MARS MAY NOT HAVE BEEN BORN ALONGSIDE THE OTHER ROCKY PLANETS”

Immune Cells Play Surprising Role In Steady Heartbeat

macrophages and heart cells

Immune system cells may help your heart keep the beat. These cells, called macrophages, usually protect the body from invading pathogens. But a new study published April 20 in Cell shows that in mice, the immune cells help electricity flow between muscle cells to keep the organ pumping.

Macrophages squeeze in between heart muscle cells, called cardiomyocytes. These muscle cells rhythmically contract in response to electrical signals, pumping blood through the heart. By “plugging in” to the cardiomyocytes, macrophages help the heart cells receive the signals and stay on beat.

Continue reading “Immune Cells Play Surprising Role In Steady Heartbeat”